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Abstract

The well known Darwin approach is generalized to study the
problem of X-ray dynamical diffraction in distorted crystals
with a three-dimensional deformation ®eld of arbitrary form.
The recursion equations describing X-ray diffraction in the
above crystals have been derived. The analytical solution of
these equations has been obtained within the kinematical
approximation.

At present, there exist at least two different methods that are
widely used in theoretical studies of X-ray dynamical diffrac-
tion from distorted crystals. One method is based on the
Takagi±Taupin differential equations (Taupin, 1964; Takagi,
1969) and the other on the recursion equations for the
re¯ection and transmission coef®cients of layered crystals. The
recursion equations were ®rst obtained by Darwin (1914) for
solving the problem of Bragg-case dynamical diffraction
by perfect crystals. Then Borie (1967) demonstrated that
Darwin's approach could be extended to Laue-case diffraction.
In fact, the method based on recursion formulae is a conve-
nient approach to the problem of X-ray scattering from
layered crystals and multilayered materials such as super-
lattices, heterostructures etc. [see e.g. Belyaev & Kolpakov,
1983; Vardanyan et al., 1985; Bartels et al., 1986; Caticha, 1994;
Andreev & Prudnikov, 1998]. Up to now, the recursion
formulae have generally been used for the description of X-ray
diffraction by layered crystals with one-dimensional variation
of the deformation ®eld u�z� and/or the polarizability ��z�
along the z axis normal to the crystal surface. The aim of the
present communication is to extend Darwin's approach to the
case of X-ray dynamical diffraction from distorted crystals
which are characterized by a three-dimensional deformation
®eld u�r� of arbitrary form.

In the spirit of Darwin's approach, we consider ®rst the
problem of X-ray scattering by a single distorted atomic plane
(Fig. 1). Let the atomic plane be irradiated by a plane mono-
chromatic wave

E�r0xy� � E0 exp�i�k0 � r0xy ÿ !t��;
where k0 � 2�=� is the modulus of the wave vector in vacuum.
The wave ®eld scattered by a small area dxdy in the atomic
plane is given by (see e.g. Penning, 1966)

dEs � ÿ�1=rxy�rePF�2#0�NxyE0

� exp�i�k0 � r0xy � k0rxy�� dxdy; �1�
where re is the classical electron radius, F�2#0� is the structure
factor, Nxy is the number of scattering centers per unit area in

the XY plane, #0 is the incidence angle, P is the polarization
factor (P � 1 for � polarization and P � cos�2#0� for �
polarization), and r0xy, rxy are the distances depending on the
position of dxdy. In the case of the distorted atomic plane (see
Fig. 1), r0xy � q� u�q�, rxy � r0 ÿ �q� u�q��, where r0 is the
position vector of the observation point A, q � �x; y; 0� is the
two-dimensional position vector in the XY plane, and u�q� is
the displacement ®eld. The vector r0 lies in the XZ plane and
makes the angle #0 with the X axis. Note that in (1) we omit
the time factor exp�ÿi!t�. If the conditions u�q�=r0 � 1 and
�=r0 � 1 are simultaneously ful®lled, then the phase
' � �k0 � r0xy � k0rxy� in (1) can be written in the following
approximate form:

' � k0r0 � k0�x2 sin 2#0 � y2�=�2r0� ÿQ � u�q�: �2�
Here, Q � ks ÿ k0 and ks � k0�r0=r0� is the wave vector of the
scattered wave. For a distorted atomic plane, the phase '
differs from that in the case of an ideal (undistorted) atomic
plane by the term Q � u�q�. In the following, we will consider
two-beam Bragg-case diffraction with the reciprocal-lattice
vector g. Then we can take Q � g. Let us represent the phase
term exp�ÿig � u�q�� in (1) as the two-dimensional Fourier
integral

exp�ÿig � u�q�� � R bG�q� exp�iq � q� dq; �3�
where q � �qx; qy; 0�. Taking into account (2) and (3) and
performing the integration of (1) with respect to x and y from
ÿ1 to�1 (the integral is reduced to the Fresnel integral), we
obtain the following expression for the scattered wave ®eld
Es�r0�:

Es�r0� �
R bEs�q� exp�ik�q� � r0� dq; �4�

Fig. 1. Sketch of diffraction from a deformed re¯ecting plane. A and B
are observation points. u�q� is the displacement of the scattering
center at q. k�0 represents the wave vector of the wave incident onto
the reverse side of the plane.



where bEs�q� � �sbG�q�E0, �s � ÿireF�2#0�Nxy�P= sin#0 is
the re¯ection coef®cient of an ideal atomic plane (Darwin,
1914) and k�q� is the wave vector with components
kx � k0 cos#0 � qx, ky � qy and kz � ÿ�k2

0 ÿ k2
x ÿ k2

y�1=2. If
the condition jqx;yj=�k0 sin#0� � 1 holds, then

kz � ÿ�k0 sin#0 ÿ �q2
x= sin 2#0 � q2

y�=�2k0 sin#0�
ÿ qx cot#0�

and the scalar product k�q� � r0 in (4) is

k�q� � r0 � k0r0�1ÿ q2
x=�2k2

0 sin 2#0� ÿ q2
y=2k2

0�:
It follows from (4) that the scattered wave ®eld is the super-
position of plane waves. Proceeding in (4) to coordinates kx

and ky, we can write the following expression for the spectral
amplitude (angular spectrum) of the wave ®eld:bEs�kk� � �sbG�kk ÿ k0

k�E0; �5�
where kk � �kx; ky; 0� and k0

k is the projection of k0 parallel to
the XY plane. Thus, in the case of X-ray scattering by a
deformed re¯ecting plane, in addition to the Bragg wave with
the wave vector ks � k�0�, there also appear scattered waves
with the wave vectors k�q�, where q 6� 0:

Let us generalize (5) to the case where the incident wave is a
superposition of plane waves:

E�q; z� � R bE0�mk� exp�imk � q� iKz�mk�z� dmk: �6�
Here mk � ��x; �y; 0� and Kz�mk� � �k2

0 ÿ m2
k�1=2: Note that the

wave ®eld (6) is a scalar one. The correctness of this
approximation was discussed by Kato (1961). In accordance
with the superposition principle, the expression for the spectral
amplitude bEs�kk� has the formbEs�kk� � �s

R bG�kk ÿ mk�bE0�mk� dmk: �7�
In the vicinity of the Bragg peak, the coef®cient �s in (7) can be
considered constant, �s � �sj#0�#B

, where #B is the Bragg
angle.

Now we calculate the forward-scattered wave ®eld at B (see
Fig. 1). Taking Q � 0 in (2), one can readily show that the
spectral amplitudebEt�kk� of the forward-scattered wave ®eld isbEt�kk� � �tbE0�kk�; �8�
where

�t � 1ÿ ireF�0�Nxy�=sin#B

� exp�ÿireF�0�Nxy�=sin#B�
is the transmission coef®cient of an ideal atomic plane
(Darwin, 1914). Thus, (8) describes refraction of plane waves
transmitted by the atomic plane.

In a similar way, we can calculate the spectral amplitudesbEs�kk� and bEt�kk� for an X-ray beam incident onto the reverse
side of the re¯ecting plane (see Fig. 1). In this case, the spectral
amplitude bEt�kk� coincides with that given by (8), and the
spectral amplitude bEs�kk� has the form

bEs�kk� � �s
R bG�kk ÿ mk�bE0�mk� dmk: �9�

Here, �s is the re¯ection coef®cient for scattering from the
reverse side of an ideal atomic plane (James, 1950) andbG�kk ÿ mk� is the Fourier transform of the phase function
exp�ig � u�q��.

Let us proceed now to the problem of X-ray diffraction in
distorted crystals. We restrict ourselves to the symmetric Bragg
case. Let the jth atomic plane inside the crystal be character-
ized by the displacement function uj�q�, the transmission
coef®cient �t

j , and the re¯ection coef®cients �s
j and �s

j . The
index j varies from 0 to N, where N is the total number of
atomic planes in the crystal. The plane with j � 0 is the
entrance surface of the crystal. We represent the wave ®elds
just before the jth atomic plane as expansions with respect to
plane waves,

Es;t
j �q� �

R bEs;t
j �kk� exp�ikk � q� dkk;

where Es
j �q� and Et

j�q� are the diffracted and transmitted wave
®elds, respectively. Then, taking into account the formulae
(7)±(9), we can write the following recursion equations:

Et
j�kk� � exp�i j�kk���t

jÿ1Et
jÿ1�kk� � exp�i j�kk���s

jÿ1

� R bGjÿ1�kk ÿ mk� exp�i j�mk��Es
j �mk� dmk; �10a�

Es
j �kk� � �t

j exp�i j�1�kk��Es
j�1�kk�

� �s
j

R bGj�kk ÿ mk�Et
j�mk� dmk; �10b�

where  j�kk� � �k2
0 ÿ k2

k�1=2
dj and dj is the mean distance

between the � jÿ 1�th and jth atomic planes. Equations (10)
can be readily interpreted. For example, there are two terms on
the right-hand side of (10a). The ®rst term describes refraction
and phase advance of transmitted waves propagating between
the two adjacent planes. The second term describes the
dynamical scattering of diffracted waves from the reverse side
of the atomic plane and the contribution of the scattered wave
®eld to the transmitted ®eld. We can similarly analyze (10b).
Equations (10) should be supplemented with the boundary
conditions Et

0�kk� � Ein�kk�, Es
N�kk� � 0, where Ein�kk� is the

spectral amplitude of the incident wave ®eld at the entrance
surface. When

bGj�kk ÿ mk� � bGj�kk ÿ mk� � ��kk ÿ mk�
and

Ein�mk� � ��mk ÿ k0
k�;

i.e. for a perfect crystal irradiated by a plane wave, equations
(10) coincide with the well known Darwin equations for two-
beam diffraction (Darwin, 1914; James, 1950). Note that (10)

Fig. 2. Calculated rocking curves for a perfect silicon crystal under a
SAW excitation (004 re¯ection, Cu K�1 radiation, � polarization).
The SAW wavelength is �s � 16 mm; the SAW amplitude is
a � 0:1 AÊ (solid line), a � 0:2 AÊ (dashed line). �# is the deviation
from the Bragg angle. The inset shows the rocking curve for the
perfect crystal.
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can also be written for the case when together with the
deformation ®eld u�r� there exists a three-dimensional spatial
modulation of the structure factor F�2#0� in (1).

In the general case of an arbitrary displacement function
uj�q�; the analytical solution of (10) can be obtained by means
of various approximate methods only. For example, it is easy to
solve these equations in the kinematical approximation.
Neglecting the second term on the right-hand side of (10a), we
derive the following expression for the spectral amplitude
Es

0�kk� of the diffracted ®eld at the entrance surface:

Es
0�kk� �

PN
j�0

�s
j Tj�kk�

R bGj�kk ÿ mk�Tj�mk�Ein�mk� dmk; �11�

where

Tj�kk� �
Qj

p�1

fexp�i p�kk���t
pÿ1g; T0 � 1:

A formula similar to (11) was obtained by HolyÂ et al. (1994) on
the basis of another approach.

As a numerical example, we show the numerical solution of
(10) for dynamical diffraction under a surface acoustic wave
(SAW) excitation in a perfect silicon crystal [see e.g.
Zolotoyabko et al. (1993) for details of the experimental
technique]. In this case, we can, in the ®rst approximation, take
uj�x� � a sin�2�x=�s�, where a and �s are the SAW amplitude
and wavelength, respectively. Fig. 2 illustrates the appearance
of the satellites in the rocking curves.

In conclusion, the Takagi±Taupin equations are a powerful
tool for the investigation of dynamical diffraction in distorted
crystals. Equations (10) represent another approach to the
problem. A comparison of these approaches will be the subject
of future work.

The author thanks Professor A. V. Andreev for stimulating
discussions.
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